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The thermodynamics of a classical lattice gas in Ising form, with arbitrary inter- 
action, is set up in entropy format, with multipoint magnetizations as control 
parameters. It is specialized to the case of one- and two-point interactions on a 
simply connected lattice; both entropy and profile equations are written down 
explicitly. Linear response functions are expressed in Wertheim-Baxter  
factorization and used to derive the Jacobian of the transformation from 
couplings to magnetizations. An arbitrary spin-glass coupling distribution is 
transformed to the corresponding magnetization distribution, whose effect 
on thermodynamic properties is assessed. A Gaussian coupling-fluctuation 
expansion diverges at sufficiently large fluctuation amplitude, suggesting the 
possibility of a phase transition. 

KEY W O R D S :  Nonuniform Ising model; spin glass; Bethe lattice. 

1. I N T R O D U C T I O N  

Under a variety of circumstances, the magnetic interaction between atomic 
sites on a crystal lattice can be represented by that of a classical nearest- 
neighbor Ising model. However, the interaction strength Jxy depends as 
well upon the internal states of the sites involved. If the internal states 
change very slowly on the time scale of thermalization of the Ising spins, 
they may be regarded as fixed, a quenched configuration. But over a very 
long time period, one will see a suitably weighted ensemble of such 
configurations, over which thermodynamic energies and expectations must 
then be averaged. Alternatively, without going to a very long-time average, 
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but instead to the thermodynamic limit of a very large volume, suppose 
one can decompose the lattice into large subdomains with identical 
environment but which effectively sample the internal state subdomain 
configurations. The result once more is that  averages over these configura- 
tions are to be taken to obtain observable energies and expectations. 
One can create situations in which the external fields h~ are similarly 
distributed. Thus, quantities of interest will take the form 

A= f "" f A{hx, Jxy} w{hx, Jxy} H dhx ~I dJxy (1.1) 

where w{hx, Jxy} is the weight (probability density) of the configuration 
{hx, Jxy}. This describes a quenched spin glass (see, e.g., ref. 1 for a 
comprehensive review). 

To be somewhat more explicit, denote by g2 the set of sites on the 
lattice and 5: the set of clusters of sites that interact, i.e., single sites and 
nearest-neighbor pairs in the systems that we will soon focus on. We 
restrict our attention to thermal equilibrium at temperature T. The lattice 
energy will then be taken, in units of kT, as 

H = -  Z JaGa where aa - - ]7 I  ax (1.2) 
AE5: xEA 

and of course each ax = ___1. At fixed {JA}, the thermodynamics is 
determined by the partition function 

Z =  ~ e x p ( ~ . J A a A t  (1.3) 
\ / 

and the corresponding free energy 

F =  - I n  Z (1.4) 

(or grand partition function from a lattice gas viewpoint, with equation of 
state P ~  = - F  for a homogeneous gas). 

Equally importantly, F generates the basic multisite magnetizations 

mA = (ff a)  = -QF/QJA (1.5) 

as well as their correlations 

<(era -- <a a > ) ( aa , -  <aa,>) > = --a2F/c3Ja cqJ a, 

= amA,/aJ A (1.6) 
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If {JA=JOA+AJA}, where {AJA} has a nontrivial distribution, and P is 
defined as in (1.1), it follows as well that 

fft.~ = -c3F/SJ ° (1.7) 

so that P generates the spin-glass expectations and thermodynamics. The 
computation of In Z{JA } is, however, a nontrivial task (as opposed to that 
of an annealed spin glass, in which the time scales of internal state and spin 
thermodynamics reverse their order, so that only Z{JA} has to be found). 
Many approximation techniques have been proposed, some--the replica 
trick in its broken symmetry form(Z)--hopefully but not provably exact, 
and a very small number of exact results for special lattices and parameter 
values. (3) 

In this paper, we focus on the class of lattices for which some exact 
solutions exact, that of simply connected lattices or open Cayley trees, or 
Bethe lattices if each site has the same connectivity qx (the number of sites 
which are nearest neighbors). These are characterized by the existence of 
exactly one path connecting any two lattice vertices, and the consequent 
fact that excision of any site breaks up the lattice into two or more 
disconnected sublattices is what makes them solvable. A lattice that locally 
resembles a Cayley tree, i.e., the region within a few sites f of a given site 
is simply connected ( f =  1 for a square lattice, f =  2 for a honeycomb), can 
be tolerably well approximated by such a lattice. Although Z{JA} cannot 
be expressed in anything like closed form for even these lattices, an inverse 
representation in terms of the mA is available, (4) with entropy as the 
thermodynamic potential or generating function. Here, this formulation is 
reviewed, a new correlation factorization developed, and a spin-glass 
average written down in schematic form. Explicit evaluation for typical 
configuration weights is not obviously feasible, but an appropriate 
recursion relation is derived. Finally, an expansion is made about the region 
of fixed coupling constant, demonstrating the possibility of fluctuation- 
induced phase transitions in such systems. 

2. THE ENTROPY F U N C T I O N A L  

Let us for the moment retain the general form (1.2) of the lattice 
energy at fixed {JA }" The corresponding entropy, in units of Boltzmann's 
constant, is normally defined as 

S = -  ~ p{a~)lnp{crA} (2.1) 
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in terms of the full lattice probability density 

constructed from the Boltzmann factor 

{O-A} 

(2.2) 

W{~A}=exp Z JAaA 
A ~ 5 :  

If the control parameters {JA} are varied by {6Ja}, then 

(2.3) 

from which 

and consequently 

az= z Z {~A > aJ~ 
A e S :  

A 

aS=  - 6 < l n  p{aA}) 

= - {Z sa, 6JA ( ~ , -  <o~,>)(o~- <oA >)} 

Inserting (1.6), we conclude that 

(2.4) 

(2.5) 

(2.6) 

( ~ S =  - ~_. J A' ~SmA' (2.7) 
A' 

According to (1.6), C~mA,/6qJ A is positive definite as a matrix and hence 
invertible. Thus, the {mA} are  independent and uniquely determine the 
{JA }-We henceforth regard the {mA } as the control parameters, (2.7)then 
telling us that 

~S 
JA - (2.8) 

~?mA 

Of course, (2.8) could equally well have been oobtained by a Legendre 
transformation from F of (1.4) and {mA} of  (1.5), switching from the 
variables {JA } to the set {mA }. This implies the relation 

S+F= --~ JAmA (2.9) 
A 

which one can just as easily obtain directly. 
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It is the quantity S{mA} that we seek, a functional (to use the term 
more usually assocaited with continuum indices) of the magnetizations 
{mA, A eSe}. Let us now specialize to the cases of present interest, in 
which the energetic components arise only from single sites x, or pairs of 
nearest neighbor sites, denoted by (x, y ) .  We also transfer to a more 
standard notation by the replacement 

{rex, mxy, ,Ix, Sxu} --> {mx, gxy, hx, Jxy} (2.10) 

Furthermore, it will be convenient to introduce the joint probabilities 
na[c+] of the sites in A = {x} having the spin value c+ = {c+x}. Since 

½(1 + c+a)= a~,~ (2.11) 

this implies the general relation 

f 1 nAEO+3= ~ (1 +C+x~x) (2.12) 
x E A  

Expanding the product as (1/2 IAI) ~++A'cA O~A'(aA'>, one also has 

nA[C+]=2~A I ~ ~A'mA' (2.13) 
A ' c A  

of which the subcases 

nx(c+) = ½(1 + c+m~) (2.14) 

n~y(O:, o~')= ¼(1 + O:mx + O~'my + O~o:' gxy) 

will be particular useful. 
Let us specialize further to simply connected lattices. Since there is just 

one path connecting any two sites, the notation 

y e  (z, z') (2.15) 

meaning that y is on the path between z and z', makes perfect sense. Now 
any y splits the remaining lattice sites (not uniquely) into two disjoint sets 
Ay and By: {x} = Ay + (y) + By, on opposite sides of y: if z e Ay, z' e By, 
then y e (z, z'). It follows that, in obvious notation 

W{ax}=ehy~yW~,y{~zLzeAy} W,,y{a~,[z' ~Bv} (2.16) 

Consequently, e.g., using (2.12), and supposing that zi e By for i = 1,..., s, 

if y e ( z ,  zi) for i = l  ..... s, then 
(2.17) 

nzzi ..... CO+z, ++z~ ..... % r ~ )  = nz(C+z I ~ )  n~, ..... (C+zi,...,o:++] my) 
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[-equivalent to the extended Markov condition n~(e~lay, c% ..... e ~ ) =  
n~(a~[ ay)]. Suppose that A is a convex set of sites, i.e., contains every site 
on the path between any two sites, that z e ~?A, the boundary of A, and that 
y e A is the unique nearest neighbor of z. Then according to (2.17), 

In the form (4) 

nA[~] = n~(c~ lay) nA-z[~-- ~ ]  (2.18) 

nzy(~, ~y) n A ~[C~-- ~ ]  (2.19) nA[O:'I ny(O~y) - 

we can nibble away at the boundary of any convex set, reducing it to a pair 
of sites. In particular, for the full lattice 12 = {x}, we arrive in this fashion 
at 

P{~x} = H H x Y ( O ~ x ' O ~ y ) / H F l x ( O : x )  q x l  (2.20) 
<x,y> / x  

Inserting (2.20) into (2.1) now yields at once the desired expression 

S = ~  (q~- l )nx(cQlnn~(~)-  ~ nxy(C~,c()lnnxy(~,cd ) (2.21) 
X, Ct < x,  y > O;, C~' 

The profile equations then follow as welh 

OOS 1 , 1 
h~-  Omx 4 ~ c ~ l n n x y ( ~ , ~ ) - ~ ( q ~ , - 1 ) ~ l n n x ( ~ )  

( y , x )  . . . .  ' o: (2.22) 
0s _1 2 

Jxy = - ~ '  In n~y(~, c~') 
Og xy 4 ~.~, 

Since (2.22) implies that 

h~mx + ~ Jxy gxy 
x < x , y >  

1 

< x , y > , ~ , ~ '  

(o~mx + o~'my .-1- ~z~z' gxy ) In nxy(O~, 0~') 

- 1 Z  (qx -  1) ~mx lnx(ct) 
x ,  ct 

we also obtain from (2.9) the simple expression 

(2.23) 

F=-�89  (qx-1)lnnx(~188 Z lnnxy(~,~') 
x , ~  < x y  >, ct, ct' 

(2.24) 
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or alternatively 

1371 

1 1 nxy(~, ~') 
F = ~  Y in n~(~)+~ Z In (2.25) 

~,~ <~,y> .... , n~(0r ny(~') 

3. LINEAR RESPONSES A N D  C O N S E Q U E N C E S  

According to (1.6), the linear response functions ~mA,/aJ A a r e  

related to the magnetization-magnetization correlations. The inverse 
linear respense ~JA/~mA,=--C328/63mA ~m A, which characterizes entropy 
fluctuations, has, however, a much simpler mathematical structure for the 
nearest-neighbor simply connected lattices we are considering. Switching to 
the appropriate notation, and using (2.14), we now have 

Ohx q x -  1 1 1 1 
8m x 4 ~ x(0r i6  <y,x> .... ,n~y(~,~') 

8h~ 1 ~ '  (3.1) 
8my 16 ~ n~y(~, ~') (y,x),c~,~' 

8hx 1 ~' 
Ogxy 16 E n-~x~, a') 

for y a nearest neighbor of x, and similarly 

OJxy 1 a' = - Z  
8rex 16 mxy(Cq c() 

OJxy - L V O~ (3.2) 
8my 16 =~ nxy(a, ~') 

8Jxy 1 1 

8g~y 16 nxy(C~, c~') 

as the only nonvanishing derivatives. These constitute a generalized set 
of (complete) direct correlation functions in lattice gas parlance. In 
addition, they have a classical Wertheim-Baxter factorization. Verifying 
this statement requires a bit of work. 

It is convenient to establish an ordering of sites on our network, 
assumed finite. For this purpose, select any boundary point, say xo, as 
origin (or root) and given it ordinal number 0. Therefore the sites are 
ordered according to their generation number, i.e., the distance to Xo, and 
within each generation ordered in any fashion at all--they will never have 
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to be compared. This means that x has just one nearest neighbor x' < x, 
and q ~ - I  nearest neighbors y > x  (which satisfy y '=x ) .  Now the 
factorization desired will take the form 

OJ/Og OJ/~m~ (OJ/Og O~((~3J/Og) l O~(~3J/Og ~3J/Om) (3.3a) 
Oh/~g ~3h/~mJ=\c?h/Og Q J \  0 I ] \  0 Qr ) 

where Q~y = 0 unless 

y = x or y > x is a nearest neighbor of x (3.3b) 

The equality of (3.3a) demands that 

QQr = Oh/~rn - c3h/~g (~?J/Og) 1 ~?J/Om (3.4) 

and we want to show that this can be satisfied under condition (3.3b). 
Inserting (3.1) and (3.2), we find that the (x, x) element if (3.4) now reads 1). 
Q2x~+ Z . 1 ~ 1 1 Z nx,(~,c( i (y,x) Qxy = - ~ (q, - 1) n - ~  + ]6 <y,=,> , , 

y > x  

0~' 2 1 

while the (x, y) element for y > x, a nearest neighbor (it is not necessary to 
evaluate for y < x, since QQris symmetric), becomes 

l i e  ==, 1 
L= ,x.U 

" 1(.? , ) 1  - 2 nx,(c~, c() ~ n~,(c~, c() n~y(~, ~') (3.6) 

In order to solve (3.5) and (3.6), assuming they are solvable, we must 
be more explicit. Only the variables {n~} and {gxy} are really involved, 
and by virtue of (2.14) and a little algebra, (3.5) and (3.6) can be written 
a s  

2 
2 2 q x -  1 1 --my (3.7) 

Qxx + 2 l _ m x  <y,x> _ m x _ m y _ g ~ y + 2 m ~ m y g ~ y  ( y , x )  Q x y  - ~ + 2 1 2 2 2 
y > x  

gxy -- mxmy (3.8) 
2 2 2 QxyQyy 1 - -mx- -my- -gxv+2mxmygxy  



Simply Connected Ising Lattices 1373 

But (3.7) can further be rewritten as 

2 
Q~x+ • 2 1 - m x '  

Q X Y =  1 2 2 2 <y,x> -- mx -- m x, -- gxx, + 2mxm~, g~x, 
y > x  

(gxy -- mxmy) 2 (3.9) 
+ ~ (1 2 2 2 2 - m~)(1 gxy + 2mxmy gxy)  (y,x> - - m x - - m y - -  

y > x  

Equations (3.8), (3.9) are clearly satisfied by 

1 - m  2, 31/2 

Qxx= ( l _ m Z ) ( l _ m Z , ) _ ( g x x , _ m ~ m x , ) 2 ]  

1 - m  2 (3.103 11/2 

QYY (1 - m~)(1 - may) - (g~y - mxmy)ZJ 

gxy --  mxmy 
Q ~ Y - ( 1 - m 2 ) m [ ( 1  z - mx)(1 - may) - (gxy - mxmy) 2] 1/2, 

and so our solution is complete. We can also return to 
notation, in terms of which 

y > x  

the n i [ ~ A ]  

Qyy = ~ { [ Z  (1/nxy(o~, o~') ) ]2 - [ Z  (o~/nxy(o:, o~') )2] } ~/2 

2 2 (1 - m y ) Q y y -  (1 -m2]O2x, ~ x y  = 1 

(3.113 

There is an immediate technical consequence of (3.3a). It is that the 
Jacobian of the (h, J ) ~  (m, g) transformation can be evaluated very 
simpty as 

Det(~J/~3g OJ/~m) 2 (~Jxy)  
\~hfi?g Oh/~?mJ = H Qyy H \ ~ x y /  (3.123 

y <x,y) 

readily transformed to 

Jac ( J, h ~ I-ix (nx( + ) nx( - )/643qx-1 
kg, m / -  H<x,,> (nxy( + + ) nxy(-+--)~xy(7-+ i nxy ( -  -- )) 

Hx,~ (1 + O~mx) qx 1 
m 

I-[ <:~, y> H~,~' (1 + O~mx + o~' my  + o~o:' g x y) 
(3.133 

Application to spin-glass expectations is instantaneous. Suppose we have 
found the expression A{mx ,  gxy } for an expectation or free energy in a 
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fixed {hx, J~y} thermal ensemble, and we now introduce the spin-glass 
weight factor w{hx, Jxy}. Hence 

. . . .  A{m:,, gxy} wEhx(m, g), Jxy(m, g)} 1-[ dhx l-[ dJxy 

. . . .  A{mx, gxy} w{hxEm, g], JxyEm, g]} 

x Jac[J, h/g, m] [I dmx 1-[ dgxy 

and so, according to (3.13), 

A = f  . . . f  A{mx,  gxy } w{hy[m,g],Jxy[m,g]} 

x exp [ ~  (qx- 1) In nx(OO - 
I_ x, c~ 

X 2  - 63Z (qx l)Iqdmxl-Igxy 

But the computations involved in (3.14) need not be trivial. 

In nxy(O~ , ~')J 
<x,y> 

(3.14) 

4. DISCUSSION 

We have succeeded in reexpressing the imposed [h, J]  distribution as 
a magnetization distribution 

P{mx, gxy} =2-6E(qx-1)exp[~ (qx-1)lnnx(Cr ~, lnnxy(O~,c()] 
x,o: (x,y) o~, o:' 

x w{hxEm, g], JxyEm, g]} (4.1) 

which is particularly appropriate, since the quantities to be averaged are 
almost always in neatest form as functions of the [m, g]. Furthermore, 
when the [h, J]  distribution is a product of independent components, 

w{hx, J x y } = H f x ( h x )  H fxy(Jxy) 
x (x,y) 

(4.2) 

which is probably the best model of physical reality, the magnetization 
distribution, according to (2.22), decomposes as 

e{m:,, gxy} = ~I Qxy(mx, gxy, my) [71 Rx(mx, {gxy}) 
(x,y) x 

(4.3) 
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where 

Qxy(mx, g~y, my)=exp[-  ~.~ lnnxy(°~,°~')]fxy(l~lnnxy(°:,°~')) 

Rx(mx,{gxy})=expI(q~,--1)~lnnx(~)lfx(l<~y,x ) 
~, o:' 

- ½ (q~ - 1) ~ ~x In nx(a))  

This produces a recursion relation 

In n~y(~, ~') 

(4.4) 

Lx ~ y(mx, g~y, my) 

=Qxy(mx, gxy, my) Ry(my, {gyz})1-I Ly~z(my, gyz, mz) 
z ~ x  

× 1-I dmz H dgyz (4.5) 
z ~ x  z ~ y  

for the "cumulative distribution" Lx~y on the y side of x, in terms of 
which simple expectations are simply expressed, e.g., the mx probability 
distribution 

p(m~,) = f 1-I Lx+y(mx, gxu, my) 1-1 dmy l-[ dgxy (4.6) 
Y Y Y 

In a homogeneous isotropic state, the recursion relation (4.5) collapses 
to a nonlinear integral equation (6) 

q- - I  q - - I  

L(m, g, rn')= Q(m, g, m') f R(m', g, {gz}) [ I  L(m', g~, mz) l~ dmz dgz 
y = 1 1 (4.7) 

which can at least be solved numerically. Analytic solutions are available 
only in very special cases, but there are a few alternative strategies. The one 
we shall pursue here is that of expanding about  the case of fixed couplings, 
and we will also restrict our attention to uniform systems. Thus in (4.2), we 
choose 

f~(h) = (2/7[)  1/2 exp( - ).h 2) 
(4.8) 

fxy(J) = (~//~z) 1/2 exp[  - y ( J -  j )2]  

so that 2 ~ ~ ,  7 ~ oo would fix h = 0, J = J, and according to (2.2) would 
correspond in the single-phase regime to 

rh = 0, ~ = tanh Y (4.9) 

822/70/5-6-19 



1376 Zhang and Percus 

What we seek is the qualitative character of the resulting [.m, g] distribu- 
tion, and for this purpose will make a Taylor expansion of (4.1), in the 
form 

lnP{mx, g~y} =const+ ( q -  1) Z lnnx(~)-  ~' In n~y(Ct, ~') 
x,~ (x,y) 

o;, c~' 

- ) . ~ h x [ m , g ] 2 - 7  ~ (JxyEm, g ] - J )  2 (4.10) 
x (x,y) 

Setting m x = &n~, g,y = ~, + 6xy, we have 

2nx(C 0 = 1 + e 6m x (4.11) 

4n~y(c~, c() = (1 + ~'~, ) + c~6mx + e'6my + ~'6gxy 

and so, to second order, 

( q - 1 ) ~ l n n ~ ( c  O -  ~ lnn~y(e,e') 
x.~ <x,y) 

1 +g2 
4g ~', 6gxy+ 2 (17~5-~2)2<x,~,> (6gxy) 2 =cons t - -~  (q-- 1) &n2+ l--g2 {~,y> 

1 + g2 ~)g 
+ Z 2({--~-)2(6m2x+am2y) - Z ~2)2t~mxt~my (4.12) 

<x,y> <x,y> (1 

On the other hand, we have to first order, from (2.22), 

hx= - ( q - 1 )  amx ~ E 6gxy 1 _~2 ( y , x )  
(4.13) 

1 

<y,x> 

so that, gathering terms, 

61nP{mx, gxy} 

4g 1 ..~_ ~y2 
- -1~g2 Z Ogxy+2(l_g2)~ Z (6gxy) 2 

(x,y) <x,y> 

7 - 2  ( q - 1 ) 6 m ~ +  ~ , 2  2 (1 "-~g2) 2 E E 6gxy 1 x (y,x> <y,x> 

+ I 1 +~2 
2 (1 __,~2)2 

<x,y> 

6gxy ] 2 

2 (1 --g2)2 6mx 

(4.14) 
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Without  going into further detail, we note the diagonal  contr ibut ion of 
6gxy - 6g: 

l - 2 ( l + ~ 2 ) - 2 7 - 2 2 ~ 2 ] ( 1 6 ~ g ~ 2 ) 2 + 4 ~ ( l ~ g ~ 2 )  (4.15) 

which tells us that the distribution is stable only if 2 g - 2 +  7 > 1 + ~2, or 

2 sinh 2 ] +  ,,, cosh 2 J >  cosh 2 ]  (4.16) 

Otherwise, and this could happen for the q = 2 one-dimensional lattice to 
the present order  of approximation,  a transit ion to another  regime of 
correlations would take place. We know of course that  a one-dimensional  
lattice with short-range interactions, spin glass or  not,  will have a unique 
distribution. Whether  the above would result in any singularities in 
the rmodynamic  properties is not  obvious, but  we know of no p roof  that  
this cannot  occur. Clearly, there is considerable qualitative information yet 
to be deduced. 
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